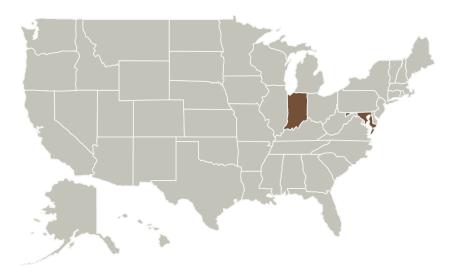
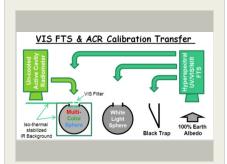
NIST in Space: Better Remote Sensors for Better Science

Completed Technology Project (2012 - 2013)


Project Introduction

This NASA Innovative Research Grant activity conducts engineering analysis to demonstrate the feasibility and advantages of applying a breakthrough remote sensor calibration concept to a wide range of future NASA remote sensor science missions, e.g., PACE, GEO-CAPE, CLARREO, HySpIRI, GACM and Heliophysics research.


Anticipated Benefits

Commercialization of the concept for use in electro-optic laboratories worldwide is foreseen. Any scientific application requiring precision photon flux measurements in the 250 - 3000 nm wavelength range will benefit.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
ITT Exelis Geospatial Systems	Lead Organization	Industry	
ITT Space Systems, LLC	Supporting Organization	Industry	Rochester, New York
L-1 Standards and Technology, Inc.	Supporting Organization	Industry	

Project Image NIST in Space: Better Remote Sensors for Better Science

Table of Contents

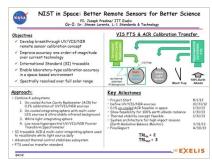
Project Introduction	
Anticipated Benefits	
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	
Images	2
Organizational Responsibility	
Project Management	
Technology Maturity (TRL)	
Technology Areas	
Target Destination	3

NIST in Space: Better Remote Sensors for Better Science

Completed Technology Project (2012 - 2013)

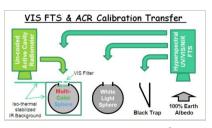
Primary U.S. Work Locations		
Indiana	Maryland	

Project Transitions


September 2012: Project Start

June 2013: Closed out

Closeout Summary: The objective of this research was to determine feasibility of improving measurement accuracy of space based remote sensors operating in the UV/VIS/NIR bands (250 nm - 3000 nm) by an order of magnitude over tech nology currently used in space and in electro-optic laboratories throughout the world. Improvements in measurement accuracy are needed to benefit a broad r ange of science in the field. Specifically, our objective was to devise a practical s ystem architecture that could achieve measurement accuracies comparable to the National Institute of Standards and Technology (NIST) while operating in a sp ace flight environment.


Images

11560-1366055269775.jpg

Project Image NIST in Space: Better Remote Sensors for Better Science

(https://techport.nasa.gov/imag e/102227)

11560-1366665181968.jpg

Project Image NIST in Space: Better Remote Sensors for Better Science

(https://techport.nasa.gov/imag e/102192)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

ITT Exelis Geospatial Systems

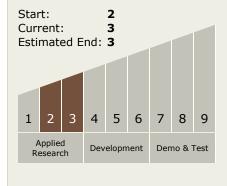
Responsible Program:

NASA Innovative Advanced Concepts

Project Management

Program Director:

Jason E Derleth


Program Manager:

Eric A Eberly

Principal Investigator:

Joseph P Predina

Technology Maturity (TRL)

NIST in Space: Better Remote Sensors for Better Science

Completed Technology Project (2012 - 2013)

Technology Areas

Primary:

- TX11 Software, Modeling, Simulation, and Information Processing
 - ☐ TX11.4 Information Processing
 - ☐ TX11.4.4 Collaborative Science and Engineering

Target Destination Earth

